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Abstract: In this paper, an active vibration control of a tensioned, elastic, axially moving string 
is investigated. The dynamics of the translating string are described with a non-linear partial 
differential equation coupled with an ordinary differential equation. A right boundary control to 
suppress the transverse vibrations of the translating continuum is proposed. The control law is 
derived via the Lyapunov second method. The exponential stability of the closed-loop system is 
verified. The effectiveness of the proposed control law is simulated. 
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1. INTRODUCTION 
 
Control problems of axially moving systems occur 

in various engineering applications: the strips in thin 
metal-sheet production lines, the cables, belts, and 
chains in power transmission lines, the magnetic tapes 
in recorders, band saws, and others. The dynamics of 
these systems can be differently modeled depending 
on the length, flexibility, and control objectives of the 
considered system. For instance, the dynamics of a 
moving cable of an elevator can be described by a 
string equation, but those of a power transmission belt 
in a traditional mill can be better represented by a belt 
equation. The difference between string and belt 
equations lies in whether the longitudinal elongation 
of the continua is considered or not.  

 In axially moving systems, the transverse (lateral) 
vibration of the moving continua often causes a 
serious problem in achieving good quality. It is also 
known that these vibrations are often caused by the 
eccentricity of a pulley, and/or an irregular speed of 
the driving motor, and/or a non-uniform material 
property, and/or environmental disturbances. Since the 
quality requirement as well as productivity in a 

production line is becoming stricter, these days an 
active or a semi-active vibration control is seriously 
considered. 

Diverse results on the dynamics, stability, and/or 
active/passive controls for axially moving systems 
have appeared in the literature [1,3,12,20,27-29,31, 
32,35-37]. Particularly, the dynamics of a band saw 
was modeled in [26], as an axially moving string, and 
its instability in relation to the moving speed and 
excitation frequency of the saw was investigated. By 
changing its damping and stiffness, a passive control 
strategy was reported for axially moving continua in 
[34]. A boundary control law that suppresses the 
lateral vibration of an Euler-Bernoulli beam was 
investigated in [25], but the beam itself was not 
axially moving. A boundary feedback stabilization 
method for a rotating body-beam system was 
investigated in [16]. An optimal boundary force 
control law that dissipates the vibration energy of an 
axially moving string was derived in [17]. Boundary 
control laws for linear and nonlinear strings were 
reported in [8,9], in which the dynamics of the 
actuator was incorporated into the control law design. 
An optimal control and an adaptive control of an 
axially moving string, respectively, were investigated 
in [10,11]. For a translating linear beam, the wave 
characteristics and an optimal boundary damping law 
as a function of linear velocity, linear slope, and linear 
force were analyzed in [19]. An adaptive vibration 
control for an axially moving linear beam that splits 
the moving part into two spans, a controlled span and 
an uncontrolled span was investigated in [21]. The 
control strategy of [21] was applied to a linear string 
in [22], providing experimental results. The 
exponential stabilization of a nonlinear beam, not 
axially moving, by a boundary control law was 
focused on in [7]. 
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In this paper, a vibration control method to reduce 
the lateral vibration of the steel strip in the continuous 
hot-dip zinc galvanizing line is considered, which 
method is depicted in Fig. 1. In order to achieve 
uniformity of the zinc deposit on both sides of the 
steel strip and to reduce the zinc consumption, the 
strip should pass between the air knives equidistantly. 
But, due to vibrations of the strip, a discrepancy 
between the average deposited masses on the left and 
right strip surfaces and a non-uniformity of the mass 
deposited across the strip occur.  

Depending on the thickness of the strip and the 
distance between the two support rollers, the steel 
strip can be modeled in one of three ways: as a 
moving beam, as a moving string, or as a moving belt. 
In the zinc galvanizing line, the distance between the 
two-support rollers is quite large compared to the strip 
thickness and the twist motion of the strip is ignored. 
Therefore, modeling as a moving string is most 
appropriate. For the given system, in-flux and out-flux 
of mass occur through the boundaries, and therefore 
the equations of motion can be derived by applying 
Hamilton's principle for a system of changing mass. 

The majority of research results for axially moving 
continua available in the literature use a linear model. 
The previous work of the authors [12] on this subject 
treated the steel strip as a linear belt, whereas in [14] a 
boundary control law incorporating the actuator 
dynamics for a linear string was investigated. In both 
cases, the elasticity of the string was not considered. 

The contributions of this paper are the following. 
First, a boundary control law for a heavily flexible 
non-linear string is derived and its exponential 

stability is proved. Second, the derived boundary 
control law requires the use of only one sensor, which 
measures the angular velocity of the strip at the right 
end. Additionally, the damping coefficient of the 
actuator, having been designed, is presented. 

 
2. EQUATIONS OF MOTION 

 
Fig. 2 shows a schematic of the axially moving 

nonlinear string representing a zinc galvanizing line, 
which schematic will be used in deriving equations of 
motion and a boundary control law. The string is 
assumed to travel at a constant speed. The left 
boundary is fixed in the sense that the boundary itself 
does not have any vertical (transversal) movement, 
but it allows the material to move longitudinally. 
However, the right boundary permits a transversal 
movement of the string under a control force.  

Let t  be the time, x  be the spatial coordinate 
along the longitude of motion, v  be the axial speed of 
the string, ),( txw  be the transversal displacement of 
the string at spatial coordinate x  and time t , and L  
be the length of the string. Then, the absolute velocity 
of the string at spatial coordinate x  is given by 

 j),(i DttxDwvv +=  
{ }j),(),(i txvwtxwv xt ++= ,              (1) 

where ( ) / ( ) / ( ) /D Dt t v x⋅ ∂ ⋅ ∂ + ∂ ⋅ ∂ , and (  )t⋅ =  
(  ) t∂ ⋅ ∂ t∂⋅∂= )  ( , =⋅ x)  (  x∂⋅∂ )  (  denote the 

partial derivatives in time t and spatial coordinate x, 
respectively. 

The kinetic energy of the axially moving string 
including the actuator, and the potential energy, are 
given by 

( ){ }∫ ++=
L

xt dxvwwvAT
0

22
2
1 ρ ),(

2
1 2 tLmwt+ ,(2) 
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Fig. 2. An axially moving strip under a right boundary 

control force. 
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Fig. 1. A translating steel strip in the zinc galvanizing

line. 
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respectively, where T  is the kinetic energy, U  is 
the potential (strain) energy, ρ  is the mass per unit 
volume (material density), A  is the cross-sectional 
area, m  is the mass of the actuator (touch roll), E  
is the elastic modulus of the string, and xε  is the 
strain due to the tension 0P . The potential energy is 
proportional to the increase in string length ds  when 
compared to the string at rest. For small slopes (see 
Fig. 3), the following relationship for string elongation 
is valid:  
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Therefore, (3) is rewritten as follows:  

∫ ⎟
⎠
⎞

⎜
⎝
⎛ +=

L
xx dxwwEAPU

0
22

0 42
1 .             (5) 

Now, to derive the equations of motion, Hamilton’s 
principle for systems with changing mass is utilized as 
follows [24]: 

( ) 02

1
.... =++−∫

t

t brcn dtWWUTδ ,           (6) 

where ..cnW  is the non-conservative work and ..brW  
is the virtual momentum transport at the right 
boundary (no variations at the left boundary). The 
variations of the non-conservative work and the 
virtual momentum transport at the right boundary are 
 

ds

w
dx

x
ww
∂
∂

+

x dx
 

Fig. 3. Schematic of string elongation for small slopes. 

),(),(),()(.. tLwtLwdtLwtFW tcccn δδδ −= ,   (7) 
{ } ),(),(),(.. tLwtLvwtLwAvW xtbr δρδ +−= ,   (8) 

where )(tFc  is the control force, and cd  is the 
damping coefficient of the actuator. Now, the 
variations of (2) and (5), respectively, are 

( )( )∫ ++=
L

xtxt dxwvwvwwAT
0

δδρδ  

),(),( tLwtLmw tt δ+ , 

∫ ∫+=
L

x
L

xxx dxwwEAdxwwPU
0 0

3
0 2

δδδ .     (10) 

The substitution of (7)-(10) into (6) yields 

 ( )∫ ++−2

1
..

t

t brcn dtWWUT δδδδ  

 ( ) dtdxwvwwA
t

t

L
txt∫ ∫ += 2

1 0
δρ  

( )∫ ∫ ++ 2

1 0
2t

t

L
xxt dtdxwwAvAvw δρρ  

∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −−+ 2

1 0
3

0 2
t

t

L
xxx dtdxwwEAwP δ

 
[ ]dttLwtLwtLmw

t

t tt∫+ 2

1
),(),(),( δδ  

{ } dttLwtLwdtF
t

t tcc∫ −+ 2

1
),(),()( δ  

{ } 0),(),(),(2

1

2 =+− ∫ tLwtLwAvtLAvw
t

t xt δρρ . 

(11) 
And the integration of (11) by parts yields 
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Note that 0),0( =twδ  because the left end is fixed 

(9)
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(i.e., 0),0( =tw ). Therefore (12) is rewritten as 
follows: 

 ( )∫ ∫ +− 2
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(13) 
Since wδ  is arbitrary except for the requirement that 
the left end is fixed (i.e., 0),0( =twδ ), a governing 
equation and a boundary constraint at the right end are 
derived as follows: 

xttt AvwAw ρρ 2+  

0
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3 22
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⎧ ++ ,       (15) 

where ttw  is the local acceleration in the transversal 
direction of the string, xtw  is the Coriolis’ 

acceleration, and xxwv2  is the centripetal acceleration. 

Remark: If 02/3 2 =xEAw  (i.e., the system is 
linear), the solution of (14) can be obtained through 
the method of separation of variables. In this case, the 

natural frequency is given by ),( 22 vc
cL
n

n −=
πω  

,3,2,1=n , where APc ρ0=  is called the wave 
velocity (see [18]). The natural frequency decreases as 
the traveling speed increases. If the traveling speed is 
equal to the wave velocity, the natural frequency 
becomes zero and a divergence of the solution occurs. 
In this sense, c is called the critical speed crv . Hence, 
the following is also assumed in this paper: 

APvv cr ρ00 =<<                    (16) 

if, using the parameters in Table 1, we can calculate 
== APvcr ρ/0 99.407 m/sec. 

 
3. BOUNDARY CONTROL LAW 

 
In this section, a boundary control law calculating 

the control force )(tFc  and the range of the damping 
coefficient dc, in order to suppress the transversal 

vibration of the string, are derived. The vibrational 
energy of the string can be dissipated in one of two 
ways: one way is to apply a control action at a point in 
the domain Lx <<0 , and the other is to dissipate 
the energy at a boundary. In this paper, it is assumed 
that the contact of the touch rolls with the string is 
firm enough and, therefore, the second view 
(boundary control) is explored. 

A positive definite function taking the form of the 
total mechanical energy of the string, excluding the 
actuator dynamics, is first considered:  

( )∫ +=
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xts dxvwwAtV
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1)( ρ  

∫ ⎟
⎠
⎞

⎜
⎝
⎛ ++

L
xx dxwwEAP

0
22

0 82
1 , 

where the subscript s stands for string. 
Lemma 1: Consider a functional V~ , 

)()()(~ tVtVtV cs += ,                     (18) 

where the second (the script c stands for 
complementary) term is defined by 

( )∫ +=
L

xtxc dxvwwxwAtV
0

)( βρ ,          (19) 

where 0>β  is a constant. Then, (17) and (18) are 
equivalent; that is, there exist constants 0>β  and 

10 1 << C  satisfying 

( ) ( ) )(1)(~)(1 11 tVCtVtVC SS +≤≤− .        (20) 

Proof: The existence of such β  and 1C  will be 
proved. First, (19) becomes 

 ( )∫ +=
L

xtxc dxvwwxwAtV
0

)( βρ  

Table 1. The plant parameters. 

Symbols Definitions Values 

A cross section area 1.4×0.0045 [m2]

L length of the  
controlled part 20 [m] 

0P  tension of the strip 9,800 [kN] 

m mass of the actuator 25 [kg] 

v strip moving speed 1.8 [m/s] 

ρ  mass per unit area 7,850 [kg/m2] 

cd  damping coefficient  
of actuator 50 [Ns/m] 

E  Elastic modulus 2×1011[N/m2]
 

(17)



Boundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line                605 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ++≤ ∫∫

L
xt

L
x dxvwwdxwLA

0
2

0
2

2
βρ

 

( )
⎭
⎬
⎫

⎩
⎨
⎧

++⋅≤ ∫∫
L

xt
L

x dxvwwdxw
P

P
LA

0
2

0
20

0 2
1

2
1βρ

     
⎭
⎬
⎫

⎩
⎨
⎧ ⋅+ ∫

L
x dxwEA

EA
LA

0
4

8
1βρ )(1 tVC S≤ , (21) 

where 

( ) 0
,,min 0

1 >=
EAAP

LAC
ρ
βρ .  (22) 

Hence the following holds: 

)()()( 11 tVCtVtVC scs ≤≤− .  (23) 

By adding )(tV s  at both sides of (23), we obtain 

( ) ( ) )(1)(~)(1 11 tVCtVtVC SS +≤≤− .  (24) 

To have 01 1 >−C , the range of β  is restricted by 

( )
AL

EAAP
ρ
ρ

β
,,min

0 0<< .  (25) 

If verifying the range of β  using the parameter 
values in Table 1, 05.0/10 =<< Lβ  is obtained. 
Note that the tension 0P  and the Young’s modulus E 
are normally large values, and therefore, 0min{ ,P  

, }A EAρ = Aρ . In this paper, β = 0.03 is selected and 
6.01 =C  is chosen. Lemma 1 is proved. � 

Now, with Lemma 1, the following Lyapunov 
function candidate )(tV , which is basically 
equivalent to the total mechanical energy of the 
combined string and actuator, is proposed. 

)()(~)( tVtVtV a+= ,  (26) 

where the additional actuator-related term )(tVa  is 
defined as 

( ){ }2),(),(
2

)( tLwLvtLwmtV xta β++= . (27) 

In the case of axially moving continua, the material 
between the two boundaries travels with time. 
Therefore, when we calculate the time-derivative as a 
Lyapunov function candidate, it should be evaluated 
as the time-rate of a certain control volume of the 
material between time t and tt Δ+ . In continuum 
mechanics, the rate of change of a certain material 
property (in our case, the mechanical energy) for a 
given control volume is the sum of the rate of change 
inside the control volume and the net influx through 

the boundaries of the control volume. These are well 
established in the form of the Reynolds transport 
theorem [33]. 

To obtain the time-derivative of (26), a fixed 
control volume is first introduced as in Fig. 4. Volume 
II represents the part of the string that occupies the 
inner part of the control volume at an arbitrary time t , 
whereas I and III represent the influx and efflux of the 
string at dtt + , respectively. Using the Reynolds 
transport theorem, the time-derivative of (26) is given 
by 

L
xVvtVdttdV

0
///)( ∂∂+∂∂= .  (28) 

The first term on the right-hand side of (28) represents 
the time-rate of the equivalent energy within the 
control volume and the second term is the net energy 
flux into the control volume.  

Noting that V  involves three terms, sV  in (17), 

cV  in (19), and aV  in (27), individual terms are 
evaluated as follows: 
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Fig. 4. The control volume with a varying right
boundary.  



606 Chang-Won Kim, Hahn Park, and Keum-Shik Hong 

( )[ ] [ ]Lx
L

xt w
vP

vwwAv
0

20
0

2

22
++=

ρ [ ]LxwEAv
0

4
8

+ . 

(30) 
Using (29) and (30), dVs(t) / dt becomes 
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(31) 
For Vc(t), the following are derived: 
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Using (32) and (33), dVc(t) / dt becomes 
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To rewrite (34), the following integrations by parts are 
utilized: 
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Also, using the governing Equation (14), the 

following equation is derived. 
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Therefore, the substitution of (35)-(38) into (34) 
yields 
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(39) 
Also, the time-derivative of (27) is 

dttdVa /)( ( ){ }),(),( tLwLvtLwm xt β++=  
( ){ }),(),( tLwLvtLw xttt β++× . (40) 

Finally, the following is the main part in this paper. 
Theorem: Consider the following axially moving 

system 

xttt AvwAw ρρ 2+  

0
2

3 22
0 =⎟

⎠
⎞

⎜
⎝
⎛ +−− xxx wwEAAvP ρ , 

0),0( =tw ,  (41) 
),(),( tLwdtLmw tctt +  

)(),(),(
2

2
0 tFtLwtLwEAP cxx =

⎭
⎬
⎫

⎩
⎨
⎧ ++ , 

)()0,(),()0,( 00 xwxwxwxw t == . 

If the control force Fc(t) and the damping coefficient 
dc are given by 

),()( tLKwtF xtc −= ,  (42) 
)/(2/ LvLAvdAL c ββρβρ +<< ,   (43) 

where )( LvmK β+=  is the control gain, the closed-
loop system is exponentially stable. 

Proof: The substitution of (42) into (15) yields 

),(),( tLwdtLmw tctt −=   (44) 

),()(),(),(
2

2
0 tLwLvmtLwtLwEAP xtxx β+−

⎭
⎬
⎫

⎩
⎨
⎧ +− . 

(38)

(35)
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The substitution of (44) into (40) yields 

( ){ }),(),(/)( tLwLvtLwdttdV xta β++=  

⎭
⎬
⎫

⎩
⎨
⎧ −−−× ),(

2
),(),( 3

0 tLwEAtLwPtLwd xxtc . (45) 

Therefore, combining (31), (39), and (45), the time-
derivative of the Lyapunov function candidate (26) is 
rewritten as 

dttdV /)( ( ) ),(
2
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0 tLwAvPL
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),(
8
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x
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− ( ) dxwAvP

L
x∫−−

0
22

02
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L

t dxwA
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L
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0
4

8
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2
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2
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βρ  
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≤ ( ) ),(
4
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xρβ
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β
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( ) dxwAvP
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0

22
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L
t dxwA

0
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βρ  
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L

x dxwEA
0

4
8

3β ),0(2
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2
4 twvAE
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),(
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1 2 tLwALd tc ⎟
⎠
⎞

⎜
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βρ  

( ) ),(
4
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xρβ
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⎠
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⎜
⎝
⎛ −−
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{ } ),(),()( tLwtLwLvdALv txc ββρ +−+ . 
(46) 

Since v  is under the critical speed (see (16)), 
2

0 AvP ρ>  is satisfied. Note that both the first and 
eighth terms (after the equality sign) have been split 
into two halves. Note also that the first eight terms in 
the final equation are all negative. Therefore, the 
negative semi-definiteness of dttdV /)(  can be 
achieved by making the combined final three terms 
negative. For brevity, new notations of ψφφ ,, 21  are 
introduced as follows. 

04/)( 2
01 >−= vAPL ρβφ ,  (47) 

( ) 22/2 LAd c ρβφ −= ,  (48) 

( ){ } 2LvdvLA c βρβψ +−= .  (49) 

From (48) and (49), if dc satisfies the following ranges 

2cd d ALβρ−>  and  

( ) ,c cd d ALv v Lβρ β+< +   (50) 

the last three terms in (46) satisfies the following 
inequality: 

2
2

2
1 ttxx wwww φψφ −+−  

{ } 2
21 )(,2/,min xt ww −−≤ φψφ . 

Therefore, from (46) and (51), the asymptotic stability 
of the closed-loop system is assured.  

Now, the exponential stability is demonstrated with 
further manipulation of the terms. (46) can be 
rewritten, by splitting the third term into two parts, as 

dttdV /)( ),(
8

4 tLwEAL
x

β
−≤ ),0(2

0 twvP x−  

),0(
2

4 twvAE
x− ( ) dxwAvP

L
x∫−−

0
22

04
ρβ  

( ) dxvwAvP
v

L
x∫−−

0
22

02
)(

4
ρβ

∫−
L

t dxwA
0

2
2

βρ  

∫−
L

x dxwEA
0

4
8

3β ( ) ),(
4

22
0 tLwAvPL

xρβ
−−  

),(
22

1 2 tLwALd tc ⎟
⎠
⎞

⎜
⎝
⎛ −−

βρ  

{ }{ }2
21 ),(),(,2,min tLwtLw tx −− φψφ  

),(
8

4 tLwEAL
x

β
−≤ ),0(2

0 twvP x− ),0(
2

4 twvAE
x−   

∫−
L

t dxwA
0

2
2

βρ ( ) dxwAvP
L

x∫−−
0

22
04

ρβ  

( )
⎥⎦
⎤

⎢⎣
⎡ +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
− ∫∫ dxvwdxw

v
AvPA L

x
L

t 0
2

0
2

2

2
0 )(
4

,
2

min
ρββρ

   ∫−
L

x dxwEA
0

4
8

3β ( ) ),(
4

22
0 tLwAvPL

xρβ
−−  

),(
22

1 2 tLwALd tc ⎟
⎠
⎞

⎜
⎝
⎛ −−

βρ  

{ }{ }2
21 ),(),(,2,min tLwtLw tx −− φψφ . 

(52) 
By using the inequality 

∫∫∫ +−≤−−
L

xt
L

x
L

t dxvwwdxvwdxw
0

2
0

2
0

2 )(
2
1)( , (53) 

and eliminating the first four and final (negative) 
terms in (52), (52) can be rewritten as 
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(54) 
If using (17) and (26)-(27), (54) can be expressed as 
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(55) represents the relationship 

t
total eVtV λ−≤ 0)( ,                       (56) 

where )0(0 VV = , and λ  is given by 
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Therefore, all of the variables included in (26) 
converge exponentially to zero.  � 

 
4. IMPLEMENTATION AND SIMULATION 
 
The implementation of (42) and (43) requires two 

things: the feedback of wxt(L,t) and the satisfaction of 
the range +− << ccc ddd . In this paper, the 
satisfaction of the desired damping range is assumed, 
because it is related to the design problem of the 
actuator. If using the parameters in Table 1 with β  = 
0.03, the exact range is verified as follows: 

17.67 < dc < 27.17.  (58) 

The implementation of wxt(L,t) can be achieved by 
backward differencing of wx(L,t) measured at each 
step. 

To demonstrate the performance of the closed loop 
system, computer simulations using a finite difference 
scheme were performed. The plant parameters used 
for the simulations are listed in Table 1. 

With =β 0.03 defined in (25), the control gain is 
given by 

39)2003.02(15)( =×+=+= LvmK β . (59) 

For simulation purposes, let dc = 25. Let the initial 
conditions be 

)3sin(2)0,( π=xw [cm], 0)0,( =xwt [m/s]. (60) 

Figs. 5 and 6 compare the displacement at x = L/2 
and x = L, respectively, in which the used control gain 
is K = 39, the damping coefficient is dc = 25, and L = 
20 m. An immediate suppression of the vibration at x 
= L/2 is seen in Fig. 5. In Fig. 6, however, the applied 
control might increase the lateral vibration at the 

 
Fig. 5. The transverse displacement w(L/2,t): K = 39,

dc = 25, and L=20m. 
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beginning, approximately up to 0.7 seeconds, but after 
that, a complete suppression is seen. Fig. 7 depicts the 
applied control force. Finally, Fig. 8 compares the 
total mechanical energy, (17) with and without control, 
of the strip in time. It is observed that the total energy 
with control decays exponentially, whereas the energy 
without control sustains itself in time. 

5. CONCLUSIONS 
 
A transverse vibration suppression scheme in a zinc 

galvanizing line, in the form of the boundary control 
of an axially moving non-linear string, was 
investigated. Focused on the nonlinearity of the string, 
the equations of motion were derived by Hamilton's 
principle. The boundary control law was derived by 
the Lyapunov method. The implementation issues of 
the designed control law, also, were discussed. The 
exponential stability of the closed-loop system was 
proved. The efficiency of the designed controller was 
shown through simulations. Future work includes a 
study of the robustness of the designed controller with 
disturbance at the boundaries. 
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