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Boundary Control of Axially Moving Continua:
Application to a Zinc Galvanizing Line

Chang-Won Kim, Hahn Park, and Keum-Shik Hong*

Abstract: In this paper, an active vibration control of a tensioned, elastic, axially moving string
is investigated. The dynamics of the translating string are described with a non-linear partial
differential equation coupled with an ordinary differential equation. A right boundary control to
suppress the transverse vibrations of the translating continuum is proposed. The control law is
derived via the Lyapunov second method. The exponential stability of the closed-loop system is
verified. The effectiveness of the proposed control law is simulated.

Keywords: Axially moving nonlinear string, boundary control, exponential stability,
hyperbolic partial differential equation, Lyapunov method.

1. INTRODUCTION

Control problems of axially moving systems occur
in various engineering applications: the strips in thin
metal-sheet production lines, the cables, belts, and
chains in power transmission lines, the magnetic tapes
in recorders, band saws, and others. The dynamics of
these systems can be differently modeled depending
on the length, flexibility, and control objectives of the
considered system. For instance, the dynamics of a
moving cable of an elevator can be described by a
string equation, but those of a power transmission belt
in a traditional mill can be better represented by a belt
equation. The difference between string and belt
equations lies in whether the longitudinal elongation
of the continua is considered or not.

In axially moving systems, the transverse (lateral)
vibration of the moving continua often causes a
serious problem in achieving good quality. It is also
known that these vibrations are often caused by the
eccentricity of a pulley, and/or an irregular speed of
the driving motor, and/or a non-uniform material
property, and/or environmental disturbances. Since the
quality requirement as well as productivity in a
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production line is becoming stricter, these days an
active or a semi-active vibration control is seriously
considered.

Diverse results on the dynamics, stability, and/or
active/passive controls for axially moving systems
have appeared in the literature [1,3,12,20,27-29,31,
32,35-37]. Particularly, the dynamics of a band saw
was modeled in [26], as an axially moving string, and
its instability in relation to the moving speed and
excitation frequency of the saw was investigated. By
changing its damping and stiffness, a passive control
strategy was reported for axially moving continua in
[34]. A boundary control law that suppresses the
lateral vibration of an Euler-Bernoulli beam was
investigated in [25], but the beam itself was not
axially moving. A boundary feedback stabilization
method for a rotating body-beam system was
investigated in [16]. An optimal boundary force
control law that dissipates the vibration energy of an
axially moving string was derived in [17]. Boundary
control laws for linear and nonlinear strings were
reported in [8,9], in which the dynamics of the
actuator was incorporated into the control law design.
An optimal control and an adaptive control of an
axially moving string, respectively, were investigated
in [10,11]. For a translating linear beam, the wave
characteristics and an optimal boundary damping law
as a function of linear velocity, linear slope, and linear
force were analyzed in [19]. An adaptive vibration
control for an axially moving linear beam that splits
the moving part into two spans, a controlled span and
an uncontrolled span was investigated in [21]. The
control strategy of [21] was applied to a linear string
in [22], providing experimental results. The
exponential stabilization of a nonlinear beam, not
axially moving, by a boundary control law was
focused on in [7].
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In this paper, a vibration control method to reduce
the lateral vibration of the steel strip in the continuous
hot-dip zinc galvanizing line is considered, which
method is depicted in Fig. 1. In order to achieve
uniformity of the zinc deposit on both sides of the
steel strip and to reduce the zinc consumption, the
strip should pass between the air knives equidistantly.
But, due to vibrations of the strip, a discrepancy
between the average deposited masses on the left and
right strip surfaces and a non-uniformity of the mass
deposited across the strip occur.

Depending on the thickness of the strip and the
distance between the two support rollers, the steel
strip can be modeled in one of three ways: as a
moving beam, as a moving string, or as a moving belt.
In the zinc galvanizing line, the distance between the
two-support rollers is quite large compared to the strip
thickness and the twist motion of the strip is ignored.
Therefore, modeling as a moving string is most
appropriate. For the given system, in-flux and out-flux
of mass occur through the boundaries, and therefore
the equations of motion can be derived by applying
Hamilton's principle for a system of changing mass.

The majority of research results for axially moving
continua available in the literature use a linear model.
The previous work of the authors [12] on this subject
treated the steel strip as a linear belt, whereas in [14] a
boundary control law incorporating the actuator
dynamics for a linear string was investigated. In both
cases, the elasticity of the string was not considered.

The contributions of this paper are the following.
First, a boundary control law for a heavily flexible
non-linear string is derived and its exponential
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Fig. 1. A translating steel strip in the zinc galvanizing
line.

stability is proved. Second, the derived boundary
control law requires the use of only one sensor, which
measures the angular velocity of the strip at the right
end. Additionally, the damping coefficient of the
actuator, having been designed, is presented.

2. EQUATIONS OF MOTION

Fig. 2 shows a schematic of the axially moving
nonlinear string representing a zinc galvanizing line,
which schematic will be used in deriving equations of
motion and a boundary control law. The string is
assumed to travel at a constant speed. The left
boundary is fixed in the sense that the boundary itself
does not have any vertical (transversal) movement,
but it allows the material to move longitudinally.
However, the right boundary permits a transversal
movement of the string under a control force.

Let t be the time, x be the spatial coordinate
along the longitude of motion, v be the axial speed of
the string, w(x,t) be the transversal displacement of

the string at spatial coordinate x and time t, and L
be the length of the string. Then, the absolute velocity
of the string at spatial coordinate x is given by

V=vi+ Dw(x,t)/Dt j
= Vi + {w; (%, 1) + vwy (X, 1)}], (1)

where D()/Dt=0d()/ot+v o()/ox, and ( - ), =
o(-)/ot =o(-)/ot, ()x= 0o(-)/ox denote the
partial derivatives in time t and spatial coordinate X,
respectively.

The kinetic energy of the axially moving string

including the actuator, and the potential energy, are
given by

1L 2 2 1 2
T:EIO pA{V + (W +vwy) }dx 5 mwe (L 1),(2)

by
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~

Fig. 2. An axially moving strip under a right boundary
control force.
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u =j0L[POgX +

respectively, where T is the kinetic energy, U is
the potential (strain) energy, o is the mass per unit

volume (material density), A is the cross-sectional
area, m is the mass of the actuator (touch roll), E

is the elastic modulus of the string, and ¢, is the

gxzjdx , ©)

strain due to the tension P,. The potential energy is

proportional to the increase in string length ds when
compared to the string at rest. For small slopes (see
Fig. 3), the following relationship for string elongation

is valid:
2Y2
[dx2+[aw(x’t)dxj ] —dx
Cds—dx ox
272 2
=! +[6w@(x,t)j } _1;£(aw(x,t)J @
X 2 oX

T odx dx
Therefore, (3) is rewritten as follows:

:—I (PO +—wxjwfdx 5)

Now, to derive the equations of motion, Hamilton’s
principle for systems with changing mass is utilized as
follows [24]:

3 ttlz (T U + W, +W,, )dt=0, (©)

where W, . is the non-conservative work and W,

is the virtual momentum transport at the right
boundary (no variations at the left boundary). The
variations of the non-conservative work and the
virtual momentum transport at the right boundary are

ds —

dx

Fig. 3. Schematic of string elongation for small slopes.

MW, .. = F.()ow(L,t) —d.w (L, t)ow(L,t), (7)
MWy, = —pAv{wg (L, t) + iy (L) }ow(L,t),  (8)

where F.(t) is the control force, and d. is the

damping coefficient of the actuator. Now, the
variations of (2) and (5), respectively, are

= pA I (I)'(Wt + VW, )W, + véwy )dx

)
+mw; (L, t)dw; (L,t1),
L EA 3
U :POJ.OWX&NXdXJr? wisw, dx . (10)

The substitution of (7)-(10) into (6) yields
jtz (6T — U + W, . + oW, )dt
J. I PAW, +vw, ), dx dt
+j [ (oA, + phAv 2w, Jow, dxct
N J~ J~ ( EA

.k [mwt(|_,t)&/vt(|_,t)a/v(L,t)]0't
1

ijﬁwx dx dt

+ [ Fo® - dow (LDJaw(L Dyt

— {2 o, (L, 1) + pAv2w, (L, 1) [aw(L,t) = 0.
i1

(11)
And the integration of (11) by parts yields

L
[, [(oAw, + pAvw, Jow]? dx
- J. E IL (pAWy + pAvw,, Jowdx dt
y 30

+ J' ttlz [@Ath + pAv2WX )éW]I(; dt

- J.ttlz IoL (pAthX + pAv? Wy )&Ndxdt

L
+ J‘ttz K_ Powy —_nggw} dt
' 0
.‘- J.( PoWix 3§A ZWXX)&\/dth
+[mw (LWL B2
_J'ttlz {tht (L,t)—F. (1) + cht(Lat)}&N(L,t)dt

_ L‘: {pAVWt (L) + pAv2w, (L,t)}&N(L,t)dt .

(12)
Note that ow(0,t) =0 because the left end is fixed
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(i.e., w(0,t)=0). Therefore (12) is rewritten as
follows:

[ [ (pAwy + 2Ry, Jowdxdt
g Jo

_ Ltlz Ig{_(% — AV +%Aw§ xx}&vdxdt

= 7T (L) = Fo ) + dowe (L OB(L, Dt

_Ltz HPO +%WE(L,t)}WX(L,t)}dN(L:t)dt-
1

(13)
Since ow is arbitrary except for the requirement that
the left end is fixed (i.e., ow(0,t) =0), a governing

equation and a boundary constraint at the right end are
derived as follows:

PAWy + 2 pAVW,

—[Po — pAv? +3ETAW>%ijx =0, (14)
Fe (t) = mwy (L, 1) + dew (L, t)

+{P0 +%W§(L,t)}wx(|—1t)’ (15)

where wy is the local acceleration in the transversal

direction of the string, w,; is the Coriolis’

acceleration, and VZWXX is the centripetal acceleration.

Remark: If 3EAWX2/2:0 (i.e., the system is
linear), the solution of (14) can be obtained through
the method of separation of variables. In this case, the

natural frequency is given by w, :n—f(c2 —v2),
c

n=123,-, where ¢c=,/Py/pA is called the wave

velocity (see [18]). The natural frequency decreases as
the traveling speed increases. If the traveling speed is
equal to the wave velocity, the natural frequency
becomes zero and a divergence of the solution occurs.

In this sense, c is called the critical speed v, . Hence,
the following is also assumed in this paper:

0<V<Vy =+/Py/PA (16)

if, using the parameters in Table 1, we can calculate
Ver =+/Po / pA = 407.99 m/sec.

3. BOUNDARY CONTROL LAW

In this section, a boundary control law calculating
the control force F;(t) and the range of the damping
coefficient d;, in order to suppress the transversal

Table 1. The plant parameters.

Symbols Definitions Values
A cross section area  |1.4<0.0045 [m?]
length of the
L controlled part 20 [m]
P tension of the strip 9,800 [kN]
m mass of the actuator 25 [kg]
v strip moving speed 1.8 [m/s]
P mass per unitarea | 7,850 [kg/m’]
damping coefficient
d, of actuator 50 [Ns/m]
E Elastic modulus 2> 10" [N/m?]

vibration of the string, are derived. The vibrational
energy of the string can be dissipated in one of two
ways: one way is to apply a control action at a point in
the domain 0< x <L, and the other is to dissipate
the energy at a boundary. In this paper, it is assumed
that the contact of the touch rolls with the string is
firm enough and, therefore, the second view
(boundary control) is explored.

A positive definite function taking the form of the
total mechanical energy of the string, excluding the
actuator dynamics, is first considered:

1L
V, (t) :E-[O PA(W, +vwy )2 dx

(17)
+£JL(PO +wajwfdx ,
270 8
where the subscript s stands for string.~

Lemma 1: Consider a functional V ,

V(D) =Vs®+Ve ), (18)
where the second (the script ¢ stands for
complementary) term is defined by

L
Ve (t) = oA ) xw, (wy -+, Jdx, (19)

where S >0 is a constant. Then, (17) and (18) are
equivalent; that is, there exist constants S >0 and
0<Cq <1 satisfying

(L-CyVs®) <V (1) <(@+Cy Vs (1) (20)

Proof: The existence of such g and C; will be
proved. First, (19) becomes

L
V. (t) = pAS J' o Wy (w; +vw, )dx
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spéﬂ{fgwﬁdx+jg(wt+vwx)zdx}

1 ByrL 1L
SpAﬂL{p_'?OIo w)%dx+5'|‘0 (w +vwX)2dx}

1 EA
+ A,BL{ g j W4dx}<C1VS(t) (21)
where
C PAPL (22)

=—7F " >0
min(P,, pA, EA)
Hence the following holds:

—CVs (1) <V (t) < CV4 (1) (23)
By adding V(t) at both sides of (23), we obtain

i-Cci Vs <VR) <fi+Ci s ). (24)
To have 1-C; >0, the range of £ is restricted by

min(Py, pA, EA)

0< pfB<
p PAL

(25)
If verifying the range of S using the parameter
values in Table 1, 0< £ <1/L=0.05 is obtained.
Note that the tension P, and the Young’s modulus E
are normally large values, and therefore, min{P,,
pA EA}=pA. In this paper, S=0.03 is selected and
C, =0.6 ischosen. Lemma 1 is proved. 0

Now, with Lemma 1, the following Lyapunov
function candidate V(t) which is basically

equivalent to the total mechanical energy of the
combined string and actuator, is proposed.

V(1) =V () +Va (), (26)

where the additional actuator-related term V,(t) is
defined as

Vat) =~ wuLo+W+mwnu0} 27)

In the case of axially moving continua, the material
between the two boundaries travels with time.
Therefore, when we calculate the time-derivative as a
Lyapunov function candidate, it should be evaluated
as the time-rate of a certain control volume of the
material between time t and t+At. In continuum
mechanics, the rate of change of a certain material
property (in our case, the mechanical energy) for a
given control volume is the sum of the rate of change
inside the control volume and the net influx through

x=0 control volume Y=L

Fig. 4. The control volume with a varying right
boundary.

the boundaries of the control volume. These are well
established in the form of the Reynolds transport
theorem [33].

To obtain the time-derivative of (26), a fixed
control volume is first introduced as in Fig. 4. Volume
Il represents the part of the string that occupies the
inner part of the control volume at an arbitrary time t,
whereas | and Il represent the influx and efflux of the
string at t+dt, respectively. Using the Reynolds
transport theorem, the time-derivative of (26) is given

by

dV (t)/dt = OV /8t + vV | ox \g 28)
The first term on the right-hand side of (28) represents
the time-rate of the equivalent energy within the

control volume and the second term is the net energy
flux into the control volume.

Noting that V involves three terms, Vg in (17),
V. in (19), and V, in (27), individual terms are
evaluated as follows:

N (t)/ ot = I OL PAW, + VW, (W + VW, Jdx
L EA
+ .[0 (Po + 7wf )waxtdx
L
= .[o PAW; + vwy ){(PO — pAV? }NXX }dx

L L
- J. PAVW,; (W + vw, )dX + J.o Po W, Wy, dX

3EA w2 EA we
+ _[0

wE (W, +vw, )dx +I wiw,, dx

oy v l%)[ ;
B wdw Jy - 22 w2 |+ 2EAY g ]

(29)

VoV (t)/ oX| g =v IOL PAW, + VW Wy + VW )dX

L EAvV (L 3
+v_|.0 Po W,y Wy, dX +TJ.0 Wy Wy, X
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o P ot S

(30)
Using (29) and (30), dV,(t) / dt becomes

dvg(t)/dt = (PO ~ pAv® IWt Wy ]Id
N V!PO - pAv ’

AN B

—pTAV[WtZ -4 3E8AV [Wf:']l(; +’OT'A‘V[(Wt +vwX)2]|.5
] e 4

= Pywy (L)W, (L, 1) +vPy W2 (L) —w2 (0,1)]

+%W§(L,t)wt(L,t) +%{W3(L,t)—wf (o,t)}.

(31)
For V(t), the following are derived:

NV (t)/ ot = pAﬂJOL KWy (W +vwy )dx
+ pAS I OL XWy (W + VW, )X, (32)
Vv oV, (t)/ox = VpAﬂIOL Wy (W + vw, )dx
+VpAS J'OL XWy, (W + VW, )l
+VpAS I OL XWy (Wi + VW JdX . (33)
Using (32) and (33), dV(t) / dt becomes
dV, (t)/dt = VpA,BJ-OL (XWy Wi+ XWy Wy + Wy Wy )X
+ pAv? ﬂIOL XW, Wy, dX + pAﬂjOL XW, W dX
+ ﬂIOL XWy (pAth + 2 pAvw,, + pAVZWXX )dx

L
+ pAVZﬂIo Wfdx

(34)
To rewrite (34), the following integrations by parts are
utilized:

L
Io (XWye Wy + XWe Wi + Wy W )X

35
= Pawyw Jg = Lwy (L, twe (L, 1), (3

L _L 2 1, 5
Jo XWXWXXdX—EWX(L,t)—EJ-O wy dx, (36)
IoL XWiyp Wi dX :%Wt2 (L,t)- %J.OL Wt2 dx. (37)

Also, using the governing Equation (14), the

following equation is derived.

L
ﬂ.[o XWy (pAth + 2pAVW,,; + pAV2WXX X

L 3EA
- 'B.[o XW, {PO +wa JWXX }dx .
Therefore, the substitution of (35)-(38) into (34)
yields
dV, (t)/dt = gpALvw, (L, t)w, (L,t)
2 2
PAVTSL o PAVTS L o
+TWX(L,'[)— 5 Jo Wy dx

(38)

+@W§(L,t)—ﬁjLW§dX

$IEAL e t)—3ﬂEA j “widx
8 X

pAﬂL

w2 (L,t) - PAﬂJ'

+ pAv 'B.[o Wy 20 .
(39)
Also, the time-derivative of (27) is
dV, (t)/dt = m{w, (L, t) + (v + AL )w, (L, 1)}
xfw (L) +(v+ A (LD). (40)

Finally, the following is the main part in this paper.
Theorem: Consider the following axially moving
system

PAW + 2 pAVW
[PO —pAv +#W2]WXX =0,
w(0,t) =0, (42)
mwy (L, t) + dow (L, t)
EA W2
+{P0 +— 5 wy (L, t)}WX(L t)=F.(t),
W(X,0) = wg (X), Wy (X,0) = Wq ().

If the control force F.(t) and the damping coefficient
d. are given by
Fe ®= —Kwy (L,1), (42)
PpALI2 <d. <VvpApLI(v+ pL), (43)

where K =m(v+ gL) is the control gain, the closed-

loop system is exponentially stable.
Proof: The substitution of (42) into (15) yields

mwy (L, t) = —d w, (L,t) (44)

—{P0+E2A w2 (L, t)}WX(L t) —m(V + L)W, (L, t) .
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The substitution of (44) into (40) yields
AV, (£)/dt = {wq (L) + (v + BL)w, (L, 1)}
{ dow, (L, 1) = Pow, (L t) =2 w3 (L, t)} (45)

Therefore, combining (31), (39), and (45), the time-
derivative of the Lyapunov function candidate (26) is
rewritten as

dv (t)/dt = —%(PO AV 2 (LY)
—@Wf(L t)—'B(PO—pAV )j WEdX
—@ILwtzdx—@j Wf(‘dx—vPwa(O,t)

EA
-= Wi —( ﬂ/’ZA"jwt (L.1)

+{BpALV —d (v + AL) jw, (L, )w, (L, 1)
< —&(PO — pAv )N (L,1) —%Wf(L,t)

Do i w2 [ o

35EA E Av
—Tj wygdx —vPyw2(0,t) — — wi(0,1)
—%( : ﬂ”zAL)wt (LY
B ey - v 2 (L)
o2 ey
+{BpALV —d (v + AL) jw, (L, )wy (L, 1) .

(46)

Since V is under the critical speed (see (16)),
Py > pAv? is satisfied. Note that both the first and

eighth terms (after the equality sign) have been split
into two halves. Note also that the first eight terms in
the final equation are all negative. Therefore, the
negative semi-definiteness of dV(t)/dt can be
achieved by making the combined final three terms
negative. For brevity, new notations of ¢, ¢,, v are

introduced as follows.

¢ = AL(Py — pAV2)/4 >0, (47)
¢, =(d, - ppALI2)2, (48)
w=1BpALv—d (v+pL)|/2. (49)

From (48) and (49), if d. satisfies the following ranges

d>d; = BpAL/2 and

de <d¢ £ BpALv/(v+ BL), (50)

the last three terms in (46) satisfies the following
inequality:

— WY+ W Wy — gy WY (51)
<—minigy, w12, 4, } (W, —wy)?.

Therefore, from (46) and (51), the asymptotic stability
of the closed-loop system is assured.

Now, the exponential stability is demonstrated with
further manipulation of the terms. (46) can be
rewritten, by splitting the third term into two parts, as

ﬂEAL w

dv (t)/dt < - Wiy (L,t) —vPuw2(0,t)

E Av
5 wy (0,t) -

_M%(Po ~ A )f (X —28 [

_3ﬂEAJ~LW d
8

(P — pAv )I dex

X ——(P0 psz)Nf(L,t)

o

_ min{¢1,w/2,¢2 }{WX(L,t) —w; (L, t)}Z

< ﬂEAL wH(L,t) —vPaw2(0,t) -2 wA (0,1)

_MILWtzdx _E(PO —pAVZ) OLW)%dX

i l:ﬁIZJA ﬂ(Po—pAv )}DLWtZdHI (w2 )dx}

42

3ﬂEAILWfdx —%(Po - pAv }N (LY
e
2

ﬂpZAL jwt (L.1)

—mingy,u/2, 6 iy (L)~ (LY.

(52)
By using the inequality

L L 1,L
—jo wfdx—jo (vwf)dxg—zjo (W, +vw,)%dx, (53)

and eliminating the first four and final (negative)
terms in (52), (52) can be rewritten as

dv (t)/dt

< —min{ﬂpA,ﬂ(Po _pAVZ)}UOL(wt +VWx)2dX}

2 NG
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blm

(PO — pAv )J. wxdx - SﬂSEA IoL Wfdx

4>|E

(Po - pAv )Nf (L)

I

< _minl 3 ,B(PO—pAVZ) ﬂ(PO—pAVZ)
< —min| 34, 2P, , 4pAV2

Py (L EA (L L
X|:70J0 wfdx+?'[0 Wfdx+%j0 (w +VWX)2dX}
AR o) 2 mive )’
4v+p)? m 2

1 BoALY2 m 5
-=ld, —F— = —w{ (Lt
2( ¢, jm T (L)

w2(L,t)

< —min{3ﬂ,

Pogl o2, EAfL 4. pPA(L 2
x|:7j0 Wde+?J'O dex+7 . (W +vw, )*dx
a2
] 2] 1, g
2m(v+ AL)2 m

x[ g{wt(L,t) + (v+ﬂL)WX(L,t)}2]

(54)
If using (17) and (26)-(27), (54) can be expressed as

dv (t)/dt

s-mir{}ﬂ, pies 7 e Vz)}i(t)

2P 4AV

l:ﬁL!PO AV D 1 (dc ) ﬂpZAL)}/A(t)

2m(v + ﬁL) ‘m

_min| 35 ,H(PO — pAvV ) ﬂ(PO —pAv )
’ 2R, ’ 4pAV

APy - ) 1 (d _ﬂpALH
© 2

2m(v+ AL)2 m
(55) represents the relationship

<V (1) +Va(®))= -V ().
(55)

Vioral (1) <Voe ™, (56)

where Vo =V (0),and A isgiven by

1 —minl 3 ﬂ(PO—psz) ﬁ’(Po—psz)
min 34 2Py , 4,0Av2 ’

2] 1, S| U
2m(v+AL)2 m 2

Therefore, all of the variables included in (26)
converge exponentially to zero. 0

4. IMPLEMENTATION AND SIMULATION

The implementation of (42) and (43) requires two
things: the feedback of wy(L,t) and the satisfaction of

the range d; <d,<dJ . In this paper, the
satisfaction of the desired damping range is assumed,

because it is related to the design problem of the
actuator. If using the parameters in Table 1 with g =

0.03, the exact range is verified as follows:
17.67 <d. < 27.17. (58)

The implementation of wy(L,t) can be achieved by
backward differencing of wy(L,t) measured at each
step.

To demonstrate the performance of the closed loop
system, computer simulations using a finite difference
scheme were performed. The plant parameters used
for the simulations are listed in Table 1.

With £ =0.03 defined in (25), the control gain is

given by
K=m(v+ fL)=15(2+ 0.03x 20) =39. (59)

For simulation purposes, let d. = 25. Let the initial
conditions be

w(x,0) =2sin(37) [cm], w;(x,0)=0[m/s].  (60)

Figs. 5 and 6 compare the displacement at x = L/2
and x = L, respectively, in which the used control gain
is K = 39, the damping coefficient is d. = 25, and L =
20 m. An immediate suppression of the vibration at x
=L/2 is seen in Fig. 5. In Fig. 6, however, the applied
control might increase the lateral vibration at the

Uncontrolled

Displacement of w(L/2,t) [m]

Controlled

1] D.IS 1‘ 1.‘5 2| 2.‘5 3
Time [sec]
Fig. 5. The transverse displacement w(L/2,t): K =39,
d. =25, and L=20m.
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] / Uncontralled

At \
Contralled

3

=]

Displacement aof wiLt) [m]

I L I L L
i} 05 1 15 2 25 3

Time [sec]
Fig. 6. The transverse displacement w(L,t): K=39, d.
=25, and L=20m.

400

200

]

=200

-400

800 -

Control Force [kN]

800 -

-1000

1200 -

-1400

1 ! 1 ! 1 ! 1 ! 1
a 0.5 1 15 2 25 3 35 4 45 g
Time [sec]

Fig. 7. The control force used in Figs. 5 and 6.

=]
T

Total Energy of the Systern [Mm]

\ Uncontrolled

2 25 3 35 4 4.5 g
Time [sec]

Fig. 8. Exponential decaying energy with the right
boundary control.

beginning, approximately up to 0.7 seeconds, but after
that, a complete suppression is seen. Fig. 7 depicts the
applied control force. Finally, Fig. 8 compares the
total mechanical energy, (17) with and without control,
of the strip in time. It is observed that the total energy
with control decays exponentially, whereas the energy
without control sustains itself in time.

5. CONCLUSIONS

A transverse vibration suppression scheme in a zinc
galvanizing line, in the form of the boundary control
of an axially moving non-linear string, was
investigated. Focused on the nonlinearity of the string,
the equations of motion were derived by Hamilton's
principle. The boundary control law was derived by
the Lyapunov method. The implementation issues of
the designed control law, also, were discussed. The
exponential stability of the closed-loop system was
proved. The efficiency of the designed controller was
shown through simulations. Future work includes a
study of the robustness of the designed controller with
disturbance at the boundaries.
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